From bulk effective mass to 2D carrier mobility accurate prediction via adversarial transfer learning
Xinyu Chen,
Shuaihua Lu,
Qian Chen,
Qionghua Zhou () and
Jinlan Wang ()
Additional contact information
Xinyu Chen: Southeast University
Shuaihua Lu: Southeast University
Qian Chen: Southeast University
Qionghua Zhou: Southeast University
Jinlan Wang: Southeast University
Nature Communications, 2024, vol. 15, issue 1, 1-9
Abstract:
Abstract Data scarcity is one of the critical bottlenecks to utilizing machine learning in material discovery. Transfer learning can use existing big data to assist property prediction on small data sets, but the premise is that there must be a strong correlation between large and small data sets. To extend its applicability in scenarios with different properties and materials, here we develop a hybrid framework combining adversarial transfer learning and expert knowledge, which enables the direct prediction of carrier mobility of two-dimensional (2D) materials using the knowledge learned from bulk effective mass. Specifically, adversarial training ensures that only common knowledge between bulk and 2D materials is extracted while expert knowledge is incorporated to further improve the prediction accuracy and generalizability. Successfully, 2D carrier mobilities are predicted with the accuracy over 90% from only crystal structure, and 21 2D semiconductors with carrier mobilities far exceeding silicon and suitable bandgap are successfully screened out. This work enables transfer learning in simultaneous cross-property and cross-material scenarios, providing an effective tool to predict intricate material properties with limited data.
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-024-49686-z Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-49686-z
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-024-49686-z
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().