Co-immobilization of whole cells and enzymes by covalent organic framework for biocatalysis process intensification
Dong Zheng,
Yunlong Zheng,
Junjie Tan,
Zhenjie Zhang,
He Huang and
Yao Chen ()
Additional contact information
Dong Zheng: Nankai University
Yunlong Zheng: Nankai University
Junjie Tan: Nankai University
Zhenjie Zhang: Nankai University
He Huang: Nanjing Normal University
Yao Chen: Nankai University
Nature Communications, 2024, vol. 15, issue 1, 1-10
Abstract:
Abstract Co-immobilization of cells and enzymes is often essential for the cascade biocatalytic processes of industrial-scale feasibility but remains a vast challenge. Herein, we create a facile co-immobilization platform integrating enzymes and cells in covalent organic frameworks (COFs) to realize the highly efficient cascade of inulinase and E. coli for bioconversion of natural products. Enzymes can be uniformly immobilized in the COF armor, which coats on the cell surface to produce cascade biocatalysts with high efficiency, stability and recyclability. Furthermore, this one-pot in situ synthesis process facilitates a gram-scale fabrication of enzyme-cell biocatalysts, which can generate a continuous-flow device conversing inulin to D-allulose, achieving space-time yield of 161.28 g L−1 d−1 and high stability (remaining >90% initial catalytic efficiency after 7 days of continuous reaction). The created platform is applied for various cells (e.g., E. coli, Yeast) and enzymes, demonstrating excellent universality. This study paves a pathway to break the bottleneck of extra- and intracellular catalysis, creates a high-performance and customizable platform for enzyme-cell cascade biomanufacturing, and expands the scope of biocatalysis process intensification.
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-024-49831-8 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-49831-8
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-024-49831-8
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().