Aperiodic approximants bridging quasicrystals and modulated structures
Toranosuke Matsubara,
Akihisa Koga (),
Atsushi Takano,
Yushu Matsushita and
Tomonari Dotera ()
Additional contact information
Toranosuke Matsubara: Tokyo Institute of Technology
Akihisa Koga: Tokyo Institute of Technology
Atsushi Takano: Nagoya University
Yushu Matsushita: Toyota Physical and Chemical Research Institute
Tomonari Dotera: Kindai University
Nature Communications, 2024, vol. 15, issue 1, 1-8
Abstract:
Abstract Aperiodic crystals constitute a class of materials that includes incommensurate (IC) modulated structures and quasicrystals (QCs). Although these two categories share a common foundation in the concept of superspace, the relationship between them has remained enigmatic and largely unexplored. Here, we show “any metallic-mean” QCs, surpassing the confines of Penrose-like structures, and explore their connection with IC modulated structures. In contrast to periodic approximants of QCs, our work introduces the pivotal role of “aperiodic approximants”, articulated through a series of k-th metallic-mean tilings serving as aperiodic approximants for the honeycomb crystal, while simultaneously redefining this tiling as a metallic-mean IC modulated structure, highlighting the intricate interplay between these crystallographic phenomena. We extend our findings to real-world applications, discovering these tiles in a terpolymer/homopolymer blend and applying our QC theory to a colloidal simulation displaying planar IC structures. In these structures, domain walls are viewed as essential components of a quasicrystal, introducing additional dimensions in superspace. Our research provides a fresh perspective on the intricate world of aperiodic crystals, shedding light on their broader implications for domain wall structures across various fields.
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-024-49843-4 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-49843-4
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-024-49843-4
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().