Shadows of quantum machine learning
Sofiene Jerbi (),
Casper Gyurik,
Simon C. Marshall,
Riccardo Molteni and
Vedran Dunjko
Additional contact information
Sofiene Jerbi: University of Innsbruck
Casper Gyurik: Leiden University
Simon C. Marshall: Leiden University
Riccardo Molteni: Leiden University
Vedran Dunjko: Leiden University
Nature Communications, 2024, vol. 15, issue 1, 1-7
Abstract:
Abstract Quantum machine learning is often highlighted as one of the most promising practical applications for which quantum computers could provide a computational advantage. However, a major obstacle to the widespread use of quantum machine learning models in practice is that these models, even once trained, still require access to a quantum computer in order to be evaluated on new data. To solve this issue, we introduce a class of quantum models where quantum resources are only required during training, while the deployment of the trained model is classical. Specifically, the training phase of our models ends with the generation of a ‘shadow model’ from which the classical deployment becomes possible. We prove that: (i) this class of models is universal for classically-deployed quantum machine learning; (ii) it does have restricted learning capacities compared to ‘fully quantum’ models, but nonetheless (iii) it achieves a provable learning advantage over fully classical learners, contingent on widely believed assumptions in complexity theory. These results provide compelling evidence that quantum machine learning can confer learning advantages across a substantially broader range of scenarios, where quantum computers are exclusively employed during the training phase. By enabling classical deployment, our approach facilitates the implementation of quantum machine learning models in various practical contexts.
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-024-49877-8 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-49877-8
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-024-49877-8
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().