EconPapers    
Economics at your fingertips  
 

A pH-sensitive closed-loop nanomachine to control hyperexcitability at the single neuron level

Assunta Merolla, Caterina Michetti, Matteo Moschetta, Francesca Vacca, Lorenzo Ciano, Laura Emionite, Simonetta Astigiano, Alessandra Romei, Simone Horenkamp, Ken Berglund, Robert E. Gross, Fabrizia Cesca (), Elisabetta Colombo () and Fabio Benfenati
Additional contact information
Assunta Merolla: Istituto Italiano di Tecnologia
Caterina Michetti: Istituto Italiano di Tecnologia
Matteo Moschetta: Istituto Italiano di Tecnologia
Francesca Vacca: Istituto Italiano di Tecnologia
Lorenzo Ciano: Istituto Italiano di Tecnologia
Laura Emionite: IRCCS Ospedale Policlinico San Martino
Simonetta Astigiano: IRCCS Ospedale Policlinico San Martino
Alessandra Romei: Istituto Italiano di Tecnologia
Simone Horenkamp: Istituto Italiano di Tecnologia
Ken Berglund: Emory University School of Medicine
Robert E. Gross: Emory University School of Medicine
Fabrizia Cesca: Istituto Italiano di Tecnologia
Elisabetta Colombo: Istituto Italiano di Tecnologia
Fabio Benfenati: Istituto Italiano di Tecnologia

Nature Communications, 2024, vol. 15, issue 1, 1-21

Abstract: Abstract Epilepsy affects 1% of the general population and 30% of patients are resistant to antiepileptic drugs. Although optogenetics is an efficient antiepileptic strategy, the difficulty of illuminating deep brain areas poses translational challenges. Thus, the search of alternative light sources is strongly needed. Here, we develop pH-sensitive inhibitory luminopsin (pHIL), a closed-loop chemo-optogenetic nanomachine composed of a luciferase-based light generator, a fluorescent sensor of intracellular pH (E2GFP), and an optogenetic actuator (halorhodopsin) for silencing neuronal activity. Stimulated by coelenterazine, pHIL experiences bioluminescence resonance energy transfer between luciferase and E2GFP which, under conditions of acidic pH, activates halorhodopsin. In primary neurons, pHIL senses the intracellular pH drop associated with hyperactivity and optogenetically aborts paroxysmal activity elicited by the administration of convulsants. The expression of pHIL in hippocampal pyramidal neurons is effective in decreasing duration and increasing latency of pilocarpine-induced tonic-clonic seizures upon in vivo coelenterazine administration, without affecting higher brain functions. The same treatment is effective in markedly decreasing seizure manifestations in a murine model of genetic epilepsy. The results indicate that pHIL represents a potentially promising closed-loop chemo-optogenetic strategy to treat drug-refractory epilepsy.

Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-024-49941-3 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-49941-3

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-024-49941-3

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-49941-3