Large oscillatory thermal hall effect in kagome metals
Dechen Zhang,
Kuan-Wen Chen,
Guoxin Zheng,
Fanghang Yu,
Mengzhu Shi,
Yuan Zhu,
Aaron Chan,
Kaila Jenkins,
Jianjun Ying,
Ziji Xiang,
Xianhui Chen and
Lu Li ()
Additional contact information
Dechen Zhang: University of Michigan
Kuan-Wen Chen: University of Michigan
Guoxin Zheng: University of Michigan
Fanghang Yu: University of Science and Technology of China
Mengzhu Shi: University of Science and Technology of China
Yuan Zhu: University of Michigan
Aaron Chan: University of Michigan
Kaila Jenkins: University of Michigan
Jianjun Ying: University of Science and Technology of China
Ziji Xiang: University of Michigan
Xianhui Chen: University of Science and Technology of China
Lu Li: University of Michigan
Nature Communications, 2024, vol. 15, issue 1, 1-8
Abstract:
Abstract The thermal Hall effect recently provided intriguing probes to the ground state of exotic quantum matters. These observations of transverse thermal Hall signals lead to the debate on the fermionic versus bosonic origins of these phenomena. The recent report of quantum oscillations (QOs) in Kitaev spin liquid points to a possible resolution. The Landau level quantization would most likely capture only the fermionic thermal transport effect. However, the QOs in the thermal Hall effect are generally hard to detect. In this work, we report the observation of a large oscillatory thermal Hall effect of correlated Kagome metals. We detect a 180-degree phase change of the oscillation and demonstrate the phase flip as an essential feature for QOs in the thermal transport properties. More importantly, the QOs in the thermal Hall channel are more profound than those in the electrical Hall channel, which strongly violates the Wiedemann–Franz (WF) law for QOs. This result presents the oscillatory thermal Hall effect as a powerful probe to the correlated quantum materials.
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-024-50336-7 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-50336-7
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-024-50336-7
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().