EconPapers    
Economics at your fingertips  
 

Boosting electrochemical oxygen reduction to hydrogen peroxide coupled with organic oxidation

Yining Sun, Kui Fan, Jinze Li, Lei Wang, Yusen Yang, Zhenhua Li (), Mingfei Shao () and Xue Duan
Additional contact information
Yining Sun: Beijing University of Chemical Technology
Kui Fan: Beijing University of Chemical Technology
Jinze Li: Beijing University of Chemical Technology
Lei Wang: Beijing University of Chemical Technology
Yusen Yang: Beijing University of Chemical Technology
Zhenhua Li: Beijing University of Chemical Technology
Mingfei Shao: Beijing University of Chemical Technology
Xue Duan: Beijing University of Chemical Technology

Nature Communications, 2024, vol. 15, issue 1, 1-12

Abstract: Abstract The electrochemical oxygen reduction reaction (ORR) to produce hydrogen peroxide (H2O2) is appealing due to its sustainability. However, its efficiency is compromised by the competing 4e− ORR pathway. In this work, we report a hierarchical carbon nanosheet array electrode with a single-atom Ni catalyst synthesized using organic molecule-intercalated layered double hydroxides as precursors. The electrode exhibits excellent 2e− ORR performance under alkaline conditions and achieves H2O2 yield rates of 0.73 mol gcat−1 h−1 in the H-cell and 5.48 mol gcat−1 h−1 in the flow cell, outperforming most reported catalysts. The experimental results show that the Ni atoms selectively adsorb O2, while carbon nanosheets generate reactive hydrogen species, synergistically enhancing H2O2 production. Furthermore, a coupling reaction system integrating the 2e− ORR with ethylene glycol oxidation significantly enhances H2O2 yield rate to 7.30 mol gcat−1 h−1 while producing valuable glycolic acid. Moreover, we convert alkaline electrolyte containing H2O2 directly into the downstream product sodium perborate to reduce the separation cost further. Techno-economic analysis validates the economic viability of this system.

Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-024-50446-2 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-50446-2

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-024-50446-2

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-50446-2