Anomalous flocking in nonpolar granular Brownian vibrators
Yangrui Chen and
Jie Zhang ()
Additional contact information
Yangrui Chen: Shanghai Jiao Tong University
Jie Zhang: Shanghai Jiao Tong University
Nature Communications, 2024, vol. 15, issue 1, 1-7
Abstract:
Abstract Using Brownian vibrators, we investigated the structures and dynamics of quasi-2d granular materials, with packing fractions (ϕ) ranging from 0.111 to 0.832. Our observations revealed a remarkable large-scale flocking behavior in hard granular disk systems, encompassing four distinct phases: granular fluid, flocking fluid, poly-crystal, and crystal. Anomalous flocking emerges at ϕ = 0.317, coinciding with a peak in local density fluctuations, and ceased at ϕ = 0.713 as the system transitioned into a poly-crystal state. The poly-crystal and crystal phases resembled equilibrium hard disks, while the granular and flocking fluids differed significantly from equilibrium systems and previous experiments involving uniformly driven spheres. This disparity suggests that collective motion arises from a competition controlled by volume fraction, involving an active force and an effective attractive interaction resulting from inelastic particle collisions. Remarkably, these findings align with recent theoretical research on the flocking motion of spherical active particles without alignment mechanisms.
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-024-50479-7 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-50479-7
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-024-50479-7
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().