EconPapers    
Economics at your fingertips  
 

Triboiontronics with temporal control of electrical double layer formation

Xiang Li, Roujuan Li, Shaoxin Li, Zhong Lin Wang () and Di Wei ()
Additional contact information
Xiang Li: Chinese Academy of Sciences
Roujuan Li: Chinese Academy of Sciences
Shaoxin Li: Chinese Academy of Sciences
Zhong Lin Wang: Chinese Academy of Sciences
Di Wei: Chinese Academy of Sciences

Nature Communications, 2024, vol. 15, issue 1, 1-11

Abstract: Abstract The nanoscale electrical double layer plays a crucial role in macroscopic ion adsorption and reaction kinetics. In this study, we achieve controllable ion migration by dynamically regulating asymmetric electrical double layer formation. This tailors the ionic-electronic coupling interface, leading to the development of triboiontronics. Controlling the charge-collecting layer coverage on dielectric substrates allows for charge collection and adjustment of the substrate-liquid contact electrification property. By dynamically managing the asymmetric electrical double layer formation between the dielectric substrate and liquids, we develop a direct-current triboiontronic nanogenerator. This nanogenerator produces a transferred charge density of 412.54 mC/m2, significantly exceeding that of current hydrovoltaic technology and conventional triboelectric nanogenerators. Additionally, incorporating redox reactions to the process enhances the peak power and transferred charge density to 38.64 W/m2 and 540.70 mC/m2, respectively.

Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-024-50518-3 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-50518-3

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-024-50518-3

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-50518-3