Genome-wide discovery for biomarkers using quantile regression at biobank scale
Chen Wang,
Tianying Wang,
Krzysztof Kiryluk,
Ying Wei,
Hugues Aschard and
Iuliana Ionita-Laza ()
Additional contact information
Chen Wang: Columbia University
Tianying Wang: Colorado State University
Krzysztof Kiryluk: Columbia University
Ying Wei: Columbia University
Hugues Aschard: Université Paris Cité
Iuliana Ionita-Laza: Columbia University
Nature Communications, 2024, vol. 15, issue 1, 1-13
Abstract:
Abstract Genome-wide association studies (GWAS) for biomarkers important for clinical phenotypes can lead to clinically relevant discoveries. Conventional GWAS for quantitative traits are based on simplified regression models modeling the conditional mean of a phenotype as a linear function of genotype. We draw attention here to an alternative, lesser known approach, namely quantile regression that naturally extends linear regression to the analysis of the entire conditional distribution of a phenotype of interest. Quantile regression can be applied efficiently at biobank scale, while having some unique advantages such as (1) identifying variants with heterogeneous effects across quantiles of the phenotype distribution; (2) accommodating a wide range of phenotype distributions including non-normal distributions, with invariance of results to trait transformations; and (3) providing more detailed information about genotype-phenotype associations even for those associations identified by conventional GWAS. We show in simulations that quantile regression is powerful across both homogeneous and various heterogeneous models. Applications to 39 quantitative traits in the UK Biobank demonstrate that quantile regression can be a helpful complement to linear regression in GWAS and can identify variants with larger effects on high-risk subgroups of individuals but with lower or no contribution overall.
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-024-50726-x Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-50726-x
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-024-50726-x
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().