EconPapers    
Economics at your fingertips  
 

The coupling of rotational and translational dynamics for rapid diffusion of nanorods in macromolecular networks

Binghui Xue, Yuan Liu, Ye Tian and Panchao Yin ()
Additional contact information
Binghui Xue: South China University of Technology
Yuan Liu: South China University of Technology
Ye Tian: Chinese Academy of Sciences
Panchao Yin: South China University of Technology

Nature Communications, 2024, vol. 15, issue 1, 1-9

Abstract: Abstract The rod-like viruses show anomalously rapid diffusion in bio-tissue networks originated from the rotation-facilitated transportation; however, the experimental investigation of the correlation of the rotational and translational dynamics is still in blank. Herein, typical rod-like and spherical gold nanoparticles (NPs) are dispersed in the classical Tetra-PEG gels, respectively, as model systems for light scattering studies. The contributions from translational and rotational diffusive dynamics, and network fluctuation dynamics can be well-resolved and the stretch exponent of rotational dynamics at 0.25 is proven to be the fingerprint for the coupled rotational and translational dynamics of nanorods. The rotation facilitated re-orientation finally leads to the fast transportation of nanorods. The discoveries are confirmed to be valid for rod-like biomacromolecule systems by studying the diffusive dynamics of Tobacco mosaic virus in gels. The work can be inspiring for the development of protocols to prevent infection of microorganism and regulate the transportation of nano-medicines.

Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-024-50859-z Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-50859-z

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-024-50859-z

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-50859-z