Predicting the effect of binding molecules on the shape and mechanical properties of structured DNA assemblies
Jae Young Lee,
Yanggyun Kim and
Do-Nyun Kim ()
Additional contact information
Jae Young Lee: Seoul National University
Yanggyun Kim: Seoul National University
Do-Nyun Kim: Seoul National University
Nature Communications, 2024, vol. 15, issue 1, 1-10
Abstract:
Abstract Chemo-mechanical deformation of structured DNA assemblies driven by DNA-binding ligands has offered promising avenues for biological and therapeutic applications. However, it remains elusive how to effectively model and predict their effects on the deformation and mechanical properties of DNA structures. Here, we present a computational framework for simulating chemo-mechanical change of structured DNA assemblies. We particularly quantify the effects of ethidium bromide (EtBr) intercalation on the geometry and mechanical properties of DNA base-pairs through molecular dynamics simulations and integrated them into finite-element-based structural analysis to predict the shape and properties of DNA objects. The proposed model captures various structural changes induced by EtBr-binding such as shape variation, flexibility modulation, and supercoiling instability. It enables a rational design of structured DNA assemblies with tunable shapes and mechanical properties by binding molecules.
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-024-50871-3 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-50871-3
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-024-50871-3
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().