Ag2Se as a tougher alternative to n-type Bi2Te3 thermoelectrics
Min Liu,
Xinyue Zhang,
Shuxian Zhang and
Yanzhong Pei ()
Additional contact information
Min Liu: Tongji Univ.
Xinyue Zhang: Tongji Univ.
Shuxian Zhang: Tongji Univ.
Yanzhong Pei: Tongji Univ.
Nature Communications, 2024, vol. 15, issue 1, 1-6
Abstract:
Abstract For half a century, only Bi2Te3-based thermoelectrics have been commercialized for near room temperature applications including both power generation and refrigeration. Because of the strong layered structure, Bi2Te3 in particular for n-type conduction has to be texturized to utilize its high in-plane thermoelectric performance, leaving a substantial challenge in toughness. This work presents the fabrication and performance evaluation of thermoelectric modules based on n-type Ag2Se paring with commercial p-Bi2Te3. Ag2Se mechanically allows an order of magnitude larger fracture strain and thermoelectrically secures the module efficiency quite competitive to that of commercial one for both refrigeration and power generation within ± 50 K of room temperature, enabling a demonstration of a significantly tougher alternative to n-type Bi2Te3 for practical applications.
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-024-50898-6 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-50898-6
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-024-50898-6
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().