EconPapers    
Economics at your fingertips  
 

Hif1α-dependent mitochondrial acute O2 sensing and signaling to myocyte Ca2+ channels mediate arterial hypoxic vasodilation

Alejandro Moreno-Domínguez, Olalla Colinas, Ignacio Arias-Mayenco, José M. Cabeza, Juan L. López-Ogayar, Navdeep S. Chandel, Norbert Weissmann, Natascha Sommer, Alberto Pascual and José López-Barneo ()
Additional contact information
Alejandro Moreno-Domínguez: Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla
Olalla Colinas: Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla
Ignacio Arias-Mayenco: Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla
José M. Cabeza: Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla
Juan L. López-Ogayar: Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla
Navdeep S. Chandel: Northwestern University
Norbert Weissmann: Justus-Liebig-University
Natascha Sommer: Justus-Liebig-University
Alberto Pascual: Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla
José López-Barneo: Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla

Nature Communications, 2024, vol. 15, issue 1, 1-17

Abstract: Abstract Vasodilation in response to low oxygen (O2) tension (hypoxic vasodilation) is an essential homeostatic response of systemic arteries that facilitates O2 supply to tissues according to demand. However, how blood vessels react to O2 deficiency is not well understood. A common belief is that arterial myocytes are O2-sensitive. Supporting this concept, it has been shown that the activity of myocyte L-type Ca2+channels, the main ion channels responsible for vascular contractility, is reversibly inhibited by hypoxia, although the underlying molecular mechanisms have remained elusive. Here, we show that genetic or pharmacological disruption of mitochondrial electron transport selectively abolishes O2 modulation of Ca2+ channels and hypoxic vasodilation. Mitochondria function as O2 sensors and effectors that signal myocyte Ca2+ channels due to constitutive Hif1α-mediated expression of specific electron transport subunit isoforms. These findings reveal the acute O2-sensing mechanisms of vascular cells and may guide new developments in vascular pharmacology.

Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-024-51023-3 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51023-3

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-024-51023-3

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51023-3