EconPapers    
Economics at your fingertips  
 

A robust near-field body area network based on coaxially-shielded textile metamaterial

Xia Zhu, Ke Wu, Xiaohang Xie, Stephan W. Anderson and Xin Zhang ()
Additional contact information
Xia Zhu: Boston University
Ke Wu: Boston University
Xiaohang Xie: Boston University
Stephan W. Anderson: Boston University
Xin Zhang: Boston University

Nature Communications, 2024, vol. 15, issue 1, 1-12

Abstract: Abstract A body area network involving wearable sensors distributed around the human body can continuously monitor physiological signals, finding applications in personal healthcare and athletic evaluation. Existing solutions for near-field body area networks, while facilitating reliable and secure interconnection among battery-free sensors, face challenges including limited spectral stability against external interference. Here we demonstrate a textile metamaterial featuring a coaxially-shielded internal structure designed to mitigate interference from extraneous loadings. The metamaterial can be patterned onto clothing to form a scalable, customizable network, enabling communication between near-field reading devices and battery-free sensing nodes placed within the network. Proof of concept demonstration shows the metamaterial’s robustness against mechanical deformation and exposure to lossy, conductive saline solutions, underscoring its potential applications in wet environments, particularly in athletic activities involving water or significant perspiration, offering insights for the future development of radio frequency components for a robust body area network at a system level.

Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-024-51061-x Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51061-x

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-024-51061-x

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51061-x