Water fluxes pattern growth and identity in shoot meristems
Juan Alonso-Serra (),
Ibrahim Cheddadi,
Annamaria Kiss,
Guillaume Cerutti,
Marianne Lang,
Sana Dieudonné,
Claire Lionnet,
Christophe Godin and
Olivier Hamant ()
Additional contact information
Juan Alonso-Serra: Université de Lyon, ENS de Lyon, UCBL, INRAE, CNRS, INRIA 46 Allée d’Italie, 69364
Ibrahim Cheddadi: Université de Lyon, ENS de Lyon, UCBL, INRAE, CNRS, INRIA 46 Allée d’Italie, 69364
Annamaria Kiss: Université de Lyon, ENS de Lyon, UCBL, INRAE, CNRS, INRIA 46 Allée d’Italie, 69364
Guillaume Cerutti: Université de Lyon, ENS de Lyon, UCBL, INRAE, CNRS, INRIA 46 Allée d’Italie, 69364
Marianne Lang: Université de Lyon, ENS de Lyon, UCBL, INRAE, CNRS, INRIA 46 Allée d’Italie, 69364
Sana Dieudonné: Université de Lyon, ENS de Lyon, UCBL, INRAE, CNRS, INRIA 46 Allée d’Italie, 69364
Claire Lionnet: Université de Lyon, ENS de Lyon, UCBL, INRAE, CNRS, INRIA 46 Allée d’Italie, 69364
Christophe Godin: Université de Lyon, ENS de Lyon, UCBL, INRAE, CNRS, INRIA 46 Allée d’Italie, 69364
Olivier Hamant: Université de Lyon, ENS de Lyon, UCBL, INRAE, CNRS, INRIA 46 Allée d’Italie, 69364
Nature Communications, 2024, vol. 15, issue 1, 1-14
Abstract:
Abstract In multicellular organisms, tissue outgrowth creates a new water sink, modifying local hydraulic patterns. Although water fluxes are often considered passive by-products of development, their contribution to morphogenesis remains largely unexplored. Here, we mapped cell volumetric growth across the shoot apex in Arabidopsis thaliana. We found that, as organs grow, a subpopulation of cells at the organ-meristem boundary shrinks. Growth simulations using a model that integrates hydraulics and mechanics revealed water fluxes and predicted a water deficit for boundary cells. In planta, a water-soluble dye preferentially allocated to fast-growing tissues and failed to enter the boundary domain. Cell shrinkage next to fast-growing domains was also robust to different growth conditions and different topographies. Finally, a molecular signature of water deficit at the boundary confirmed our conclusion. Taken together, we propose that the differential sink strength of emerging organs prescribes the hydraulic patterns that define boundary domains at the shoot apex.
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-024-51099-x Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51099-x
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-024-51099-x
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().