EconPapers    
Economics at your fingertips  
 

Morphology-independent general-purpose optical surface tractor beam

Neng Wang, Jack Ng () and Guo Ping Wang ()
Additional contact information
Neng Wang: Shenzhen University
Jack Ng: Southern University of Science and Technology
Guo Ping Wang: Shenzhen University

Nature Communications, 2024, vol. 15, issue 1, 1-9

Abstract: Abstract Optical tractor beams capable of pulling particles backward have garnered significant and increasing interest. Traditional optical tractor beams are limited to free space beams with small forward wavevectors, enabling them to pull selected particles. Here, we present a comprehensive theory for the optical force exerted by a surface wave using analytical and numerical calculations, revealing the relationship between the canonical momentum and optical forces. Based on this theory, we demonstrate a general purpose optical surface tractor beam that can pull any passive particle, regardless of size, composition, or geometry. The tractor beam utilizes a surface wave with negative canonical momentum characterized by a single well-defined negative Bloch k vector. The tractor beam relies on a mechanism where the negative incident force always surpasses the recoil force. As such, the tractor beam, when excited on the surface of a double-negative index metamaterial, can pull particles with different morphologies.

Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-024-51100-7 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51100-7

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-024-51100-7

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51100-7