EconPapers    
Economics at your fingertips  
 

Direct ketone synthesis from primary alcohols and alkenes enabled by a dual photo/cobalt catalysis

Guanghao Ji, Xinqiang Chen and Jing Zhang ()
Additional contact information
Guanghao Ji: Wuhan University
Xinqiang Chen: Wuhan University
Jing Zhang: Wuhan University

Nature Communications, 2024, vol. 15, issue 1, 1-8

Abstract: Abstract Catalytic methods to couple alcohol and alkene feedstocks are highly valuable in synthetic chemistry. The direct oxidative coupling of primary alcohols and alkenes offers a streamlined approach to ketone synthesis. Currently, available methods are based on transition metal-catalyzed alkene hydroacylation, which involves the generation of an electrophilic aldehyde intermediate from primary alcohol dehydrogenation. These methods generally require high reaction temperatures and a high loading of precious metal catalysts and are predominantly effective for branch-selective reactions with electron-rich alkenes. Herein, we designed a dual photo/cobalt-catalytic method to manipulate the reactivity of nucleophilic ketyl radicals for the synthesis of ketones from primary alcohols and alkenes in complementary reactivity and selectivity. This protocol exhibits exceptional scope across both primary alcohols and alkenes with high chemo- and regio-selectivity under mild reaction conditions. Mechanism investigations reveal the essential role of cobalt catalysis in enabling efficient catalysis and broad substrate scope.

Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-024-51190-3 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51190-3

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-024-51190-3

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51190-3