Radiative plasma simulations of black hole accretion flow coronae in the hard and soft states
Joonas Nättilä ()
Additional contact information
Joonas Nättilä: University of Helsinki
Nature Communications, 2024, vol. 15, issue 1, 1-7
Abstract:
Abstract Stellar-mass black holes in x-ray binary systems are powered by mass transfer from a companion star. The accreted gas forms an accretion disk around the black hole and emits x-ray radiation in two distinct modes: hard and soft state. The origin of the states is unknown. We perform radiative plasma simulations of the electron-positron-photon corona around the inner accretion flow. Our simulations extend previous efforts by self-consistently including all the prevalent quantum electrodynamic processes. We demonstrate that when the plasma is turbulent, it naturally generates the observed hard-state emission. In addition, we show that when soft x-ray photons irradiate the system—mimicking radiation from an accretion disk—the turbulent plasma transitions into a new equilibrium state that generates the observed soft-state emission. Our findings demonstrate that turbulent motions of magnetized plasma can power black-hole accretion flow coronae and that quantum electrodynamic processes control the underlying state of the plasma.
Date: 2024
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-024-51257-1 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51257-1
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-024-51257-1
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().