Rapid and inexpensive synthesis of liter-scale SiC aerogels
Lujia Han,
Shile Chen,
Honghua Li,
Yanhao Dong (),
Chang-An Wang and
Jiangtao Li ()
Additional contact information
Lujia Han: Chinese Academy of Sciences
Shile Chen: Tsinghua University
Honghua Li: Chinese Academy of Sciences
Yanhao Dong: Tsinghua University
Chang-An Wang: Tsinghua University
Jiangtao Li: Chinese Academy of Sciences
Nature Communications, 2024, vol. 15, issue 1, 1-9
Abstract:
Abstract Ceramic aerogels are promising materials for thermal insulation and protection under harsh environments. Yet current synthesis methods fail to provide an energy-, time-, and cost-effective route for high-throughput production and large-scale applications, especially for non-oxide ceramic aerogels. Here we reported a way to synthesize SiC aerogels within seconds and over liter scale, with a demonstrated throughput of ~16 L min−1 in a typical lab experiment. The key lies in renovated combustion synthesis and a fast expansion from powder reactants to aerogel products over 1000% in volume. The synthesis process is self-sustainable and requires minimal energy input. The product is very cheap, with an estimated price of ~$0.7 L−1 (~$7 kg−1). The obtained SiC aerogels have excellent thermo-mechanical properties, including low thermal conductivity, high elasticity, and damage tolerance. Our invention not only offers a practical pathway for large-scale applications of ceramic aerogels, but also calls for rethinking of combustion synthesis in one-step conversion from raw chemicals to bulk products ready for practical applications.
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-024-51278-w Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51278-w
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-024-51278-w
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().