Jamming is a first-order transition with quenched disorder in amorphous materials sheared by cyclic quasistatic deformations
Yue Deng,
Deng Pan and
Yuliang Jin ()
Additional contact information
Yue Deng: Chinese Academy of Sciences
Deng Pan: Chinese Academy of Sciences
Yuliang Jin: Chinese Academy of Sciences
Nature Communications, 2024, vol. 15, issue 1, 1-12
Abstract:
Abstract Jamming is an athermal transition between flowing and rigid states in amorphous systems such as granular matter, colloidal suspensions, complex fluids and cells. The jamming transition seems to display mixed aspects of a first-order transition, evidenced by a discontinuity in the coordination number, and a second-order transition, indicated by power-law scalings and diverging lengths. Here we demonstrate that jamming is a first-order transition with quenched disorder in cyclically sheared systems with quasistatic deformations, in two and three dimensions. Based on scaling analyses, we show that fluctuations of the jamming density in finite-sized systems have important consequences on the finite-size effects of various quantities, resulting in a square relationship between disconnected and connected susceptibilities, a key signature of the first-order transition with quenched disorder. This study puts the jamming transition into the category of a broad class of transitions in disordered systems where sample-to-sample fluctuations dominate over thermal fluctuations, suggesting that the nature and behavior of the jamming transition might be better understood within the developed theoretical framework of the athermally driven random-field Ising model.
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-024-51319-4 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51319-4
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-024-51319-4
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().