EconPapers    
Economics at your fingertips  
 

Data-driven quantum chemical property prediction leveraging 3D conformations with Uni-Mol+

Shuqi Lu, Zhifeng Gao, Di He, Linfeng Zhang and Guolin Ke ()
Additional contact information
Shuqi Lu: DP Technology
Zhifeng Gao: DP Technology
Di He: Peking University
Linfeng Zhang: DP Technology
Guolin Ke: DP Technology

Nature Communications, 2024, vol. 15, issue 1, 1-11

Abstract: Abstract Quantum chemical (QC) property prediction is crucial for computational materials and drug design, but relies on expensive electronic structure calculations like density functional theory (DFT). Recent deep learning methods accelerate this process using 1D SMILES or 2D graphs as inputs but struggle to achieve high accuracy as most QC properties depend on refined 3D molecular equilibrium conformations. We introduce Uni-Mol+, a deep learning approach that leverages 3D conformations for accurate QC property prediction. Uni-Mol+ first generates a raw 3D conformation using RDKit then iteratively refines it towards DFT equilibrium conformation using neural networks, which is finally used to predict the QC properties. To effectively learn this conformation update process, we introduce a two-track Transformer model backbone and a novel training approach. Our benchmarking results demonstrate that the proposed Uni-Mol+ significantly improves the accuracy of QC property prediction in various datasets.

Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-024-51321-w Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51321-w

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-024-51321-w

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51321-w