EconPapers    
Economics at your fingertips  
 

Origins of complexity in the rheology of Soft Earth suspensions

Shravan Pradeep, Paulo E. Arratia and Douglas J. Jerolmack ()
Additional contact information
Shravan Pradeep: University of Pennsylvania
Paulo E. Arratia: University of Pennsylvania
Douglas J. Jerolmack: University of Pennsylvania

Nature Communications, 2024, vol. 15, issue 1, 1-10

Abstract: Abstract When wet soil becomes fully saturated by intense rainfall, or is shaken by an earthquake, it may fluidize catastrophically. Sand-rich slurries are treated as granular suspensions, where the failure is related to an unjamming transition, and friction is controlled by particle concentration and pore pressure. Mud flows are modeled as gels, where yielding and shear-thinning behaviors arise from inter-particle attraction and clustering. Here we show that the full range of complex flow behaviors previously reported for natural debris flows can be reproduced with three ingredients: water, silica sand, and kaolin clay. Going from sand-rich to clay-rich suspensions, we observe continuous transition from brittle (Coulomb-like) to ductile (plastic) yielding. We propose a general constitutive relation for soil suspensions, with a particle rearrangement time that is controlled by yield stress and jamming distance. Our experimental results are supported by models for amorphous solids, suggesting that the paradigm of non-equilibrium phase transitions can help us understand and predict the complex behaviors of Soft Earth suspensions.

Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-024-51357-y Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51357-y

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-024-51357-y

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51357-y