EconPapers    
Economics at your fingertips  
 

Sub-threshold neuronal activity and the dynamical regime of cerebral cortex

Oren Amsalem, Hidehiko Inagaki, Jianing Yu, Karel Svoboda and Ran Darshan ()
Additional contact information
Oren Amsalem: Harvard Medical School
Hidehiko Inagaki: Max Planck Florida Institute for Neuroscience
Jianing Yu: Peking University
Karel Svoboda: Allen Institute for Neural Dynamics
Ran Darshan: Tel Aviv University

Nature Communications, 2024, vol. 15, issue 1, 1-17

Abstract: Abstract Cortical neurons exhibit temporally irregular spiking patterns and heterogeneous firing rates. These features arise in model circuits operating in a ‘fluctuation-driven regime’, in which fluctuations in membrane potentials emerge from the network dynamics. However, it is still debated whether the cortex operates in such a regime. We evaluated the fluctuation-driven hypothesis by analyzing spiking and sub-threshold membrane potentials of neurons in the frontal cortex of mice performing a decision-making task. We showed that while standard fluctuation-driven models successfully account for spiking statistics, they fall short in capturing the heterogeneity in sub-threshold activity. This limitation is an inevitable outcome of bombarding single-compartment neurons with a large number of pre-synaptic inputs, thereby clamping the voltage of all neurons to more or less the same average voltage. To address this, we effectively incorporated dendritic morphology into the standard models. Inclusion of dendritic morphology in the neuronal models increased neuronal selectivity and reduced error trials, suggesting a functional role for dendrites during decision-making. Our work suggests that, during decision-making, cortical neurons in high-order cortical areas operate in a fluctuation-driven regime.

Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-024-51390-x Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51390-x

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-024-51390-x

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51390-x