EconPapers    
Economics at your fingertips  
 

A deep learning method for simultaneous denoising and missing wedge reconstruction in cryogenic electron tomography

Simon Wiedemann and Reinhard Heckel ()
Additional contact information
Simon Wiedemann: Technical University of Munich
Reinhard Heckel: Technical University of Munich

Nature Communications, 2024, vol. 15, issue 1, 1-12

Abstract: Abstract Cryogenic electron tomography is a technique for imaging biological samples in 3D. A microscope collects a series of 2D projections of the sample, and the goal is to reconstruct the 3D density of the sample called the tomogram. Reconstruction is difficult as the 2D projections are noisy and can not be recorded from all directions, resulting in a missing wedge of information. Tomograms conventionally reconstructed with filtered back-projection suffer from noise and strong artefacts due to the missing wedge. Here, we propose a deep-learning approach for simultaneous denoising and missing wedge reconstruction called DeepDeWedge. The algorithm requires no ground truth data and is based on fitting a neural network to the 2D projections using a self-supervised loss. DeepDeWedge is simpler than current state-of-the-art approaches for denoising and missing wedge reconstruction, performs competitively and produces more denoised tomograms with higher overall contrast.

Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-024-51438-y Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51438-y

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-024-51438-y

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51438-y