Simultaneous capture of trace benzene and SO2 in a robust Ni(II)-pyrazolate framework
Guang-Rui Si,
Xiang-Jing Kong,
Tao He,
Zhengqing Zhang and
Jian-Rong Li ()
Additional contact information
Guang-Rui Si: Beijing University of Technology
Xiang-Jing Kong: Beijing University of Technology
Tao He: Beijing University of Technology
Zhengqing Zhang: Tiangong University
Jian-Rong Li: Beijing University of Technology
Nature Communications, 2024, vol. 15, issue 1, 1-8
Abstract:
Abstract Benzene and SO2, coexisting as hazardous air pollutants in some cases, such as in coke oven emissions, have led to detrimental health and environmental effects. Physisorbents offer promise in capturing benzene and SO2, while their performance compromises at low concentration. Particularly, the simultaneous capture of trace benzene and SO2 under humid conditions is attractive but challenging. Here, we address this issue by constructing a robust pyrazolate metal-organic framework (MOF) sorbent featuring rich accessible Ni(II) sites with low affinity to water and good stability. This material achieves a high benzene uptake of 5.08 mmol g–1 at 10 Pa, surpassing previous benchmarks. More importantly, it exhibits an adsorption capacity of ~0.51 mmol g–1 for 10 ppm benzene and ~1.21 mmol g–1 for 250 ppm SO2 under 30% relative humidity. This work demonstrates that a pioneering MOF enables simultaneous capture of trace benzene and SO2, highlighting the potential of physisorbents for industrial effluent remediation, even in the presence of moisture.
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-024-51522-3 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51522-3
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-024-51522-3
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().