Inefficient nitrogen transport to the lower mantle by sediment subduction
Weihua Huang,
Yan Yang (),
Yuan Li,
Zheng Xu,
Shuiyuan Yang,
Shengbin Guo and
Qunke Xia
Additional contact information
Weihua Huang: Zhejiang University
Yan Yang: Zhejiang University
Yuan Li: Chinese Academy of Sciences
Zheng Xu: Chinese Academy of Sciences
Shuiyuan Yang: China University of Geosciences
Shengbin Guo: China University of Geosciences
Qunke Xia: Zhejiang University
Nature Communications, 2024, vol. 15, issue 1, 1-10
Abstract:
Abstract The fate of sedimentary nitrogen during subduction is essential for understanding the origin of nitrogen in the deep Earth. Here we study the behavior of nitrogen in slab sediments during the phengite to K-hollandite transition at 10–12 GPa and 800–1100 °C. Phengite stability is extended by 1–3 GPa in the nitrogen (NH4+)-bearing system. The phengite-fluid partition coefficient of nitrogen is 0.031 at 10 GPa, and K-hollandite-fluid partition coefficients of nitrogen range from 0.008 to 0.064, showing a positive dependence on pressure but a negative dependence on temperature. The nitrogen partitioning data suggest that K-hollandite can only preserve ~43% and ~26% of the nitrogen from phengite during the phengite to K-hollandite transition along the cold and warm slab geotherms, respectively. Combined with the slab sedimentary nitrogen influx, we find that a maximum of ~1.5 × 108 kg/y of nitrogen, representing ~20% of the initial sedimentary nitrogen influx, could be transported by K-hollandite to the lower mantle. We conclude that slab sediments may have contributed less than 15% of the lower mantle nitrogen, most of which is probably of primordial origin.
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-024-51524-1 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51524-1
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-024-51524-1
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().