EconPapers    
Economics at your fingertips  
 

The driving of North American climate extremes by North Pacific stationary-transient wave interference

Mingyu Park (), Nathaniel C. Johnson and Thomas L. Delworth
Additional contact information
Mingyu Park: Princeton University
Nathaniel C. Johnson: National Oceanic and Atmospheric Administration
Thomas L. Delworth: National Oceanic and Atmospheric Administration

Nature Communications, 2024, vol. 15, issue 1, 1-18

Abstract: Abstract Wave interference between transient waves and climatological stationary waves is a useful framework for diagnosing the magnitude of stationary waves. Here, we find that the wave interference over the North Pacific Ocean is an important driver of North American wintertime cold and heavy precipitation extremes in the present climate, but that this relationship is projected to weaken under increasing greenhouse gas emissions. When daily circulation anomalies are in-phase with the climatological mean state, the anomalous transport of heat and moisture causes the enhanced occurrence of cold extremes across the continental U.S. and a significant decrease of heavy precipitation extremes in the western U.S. In a future emissions scenario, the climatological stationary wave over the eastern North Pacific weakens and shifts spatially, which alters and generally weakens the relationship between wave interference and North American climate extremes. Our results underscore that the prediction of changes in regional wave interference is pivotal for understanding the future regional climate variability.

Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-024-51601-5 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51601-5

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-024-51601-5

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51601-5