Flexible solid-liquid bi-continuous electrically and thermally conductive nanocomposite for electromagnetic interference shielding and heat dissipation
Yue Sun,
Yunting Su,
Ziyuan Chai,
Lei Jiang and
Liping Heng ()
Additional contact information
Yue Sun: Beihang University
Yunting Su: Beihang University
Ziyuan Chai: Beihang University
Lei Jiang: Beihang University
Liping Heng: Beihang University
Nature Communications, 2024, vol. 15, issue 1, 1-13
Abstract:
Abstract In the era of 5 G, the rise in power density in miniaturized, flexible electronic devices has created an urgent need for thin, flexible, polymer-based electrically and thermally conductive nanocomposites to address challenges related to electromagnetic interference (EMI) and heat accumulation. However, the difficulties in establishing enduring and continuous transfer pathways for electrons and phonons using solid-rigid conductive fillers within insulative polymer matrices limit the development of such nanocomposites. Herein, we incorporate MXene-bridging-liquid metal (MBLM) solid-liquid bi-continuous electrical-thermal conductive networks within aramid nanofiber/polyvinyl alcohol (AP) matrices, resulting in the AP/MBLM nanocomposite with ultra-high electrical conductivity (3984 S/cm) and distinguished thermal conductivity of 13.17 W m−1 K−1. This nanocomposite exhibits excellent EMI shielding efficiency (SE) of 74.6 dB at a minimal thickness of 22 μm, and maintains high EMI shielding stability after enduring various harsh conditions. Meanwhile, the AP/MBLM nanocomposite also demonstrates promising heat dissipation behavior. This work expands the concept of creating thin films with high electrical and thermal conductivity.
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-024-51732-9 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51732-9
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-024-51732-9
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().