EconPapers    
Economics at your fingertips  
 

Structural evolution of liquid silicates under conditions in Super-Earth interiors

Guillaume Morard (), Jean-Alexis Hernandez (), Clara Pege, Charlotte Nagy, Lélia Libon, Antoine Lacquement, Dimosthenis Sokaras, Hae Ja Lee, Eric Galtier, Philip Heimann, Eric Cunningham, Siegfried H. Glenzer, Tommaso Vinci, Clemens Prescher, Silvia Boccato, Julien Chantel, Sébastien Merkel, Yanyao Zhang, Hong Yang, Xuehui Wei, Silvia Pandolfi, Wendy L. Mao, Arianna E. Gleason, Sang Heon Shim, Roberto Alonso-Mori () and Alessandra Ravasio
Additional contact information
Guillaume Morard: CNRS
Jean-Alexis Hernandez: European Synchrotron Radiation Facility
Clara Pege: CNRS
Charlotte Nagy: CNRS
Lélia Libon: CNRS
Antoine Lacquement: European Synchrotron Radiation Facility
Dimosthenis Sokaras: SLAC National Accelerator Laboratory
Hae Ja Lee: SLAC National Accelerator Laboratory
Eric Galtier: SLAC National Accelerator Laboratory
Philip Heimann: SLAC National Accelerator Laboratory
Eric Cunningham: SLAC National Accelerator Laboratory
Siegfried H. Glenzer: SLAC National Accelerator Laboratory
Tommaso Vinci: Sorbonne Université
Clemens Prescher: University of Freiburg
Silvia Boccato: de Physique des Matériaux et de Cosmochimie
Julien Chantel: UMR 8207—UMET—Unité Matériaux et Transformations
Sébastien Merkel: UMR 8207—UMET—Unité Matériaux et Transformations
Yanyao Zhang: Stanford University
Hong Yang: Stanford University
Xuehui Wei: Arizona State University
Silvia Pandolfi: de Physique des Matériaux et de Cosmochimie
Wendy L. Mao: SLAC National Accelerator Laboratory
Arianna E. Gleason: SLAC National Accelerator Laboratory
Sang Heon Shim: Arizona State University
Roberto Alonso-Mori: SLAC National Accelerator Laboratory
Alessandra Ravasio: Sorbonne Université

Nature Communications, 2024, vol. 15, issue 1, 1-9

Abstract: Abstract Molten silicates at depth are crucial for planetary evolution, yet their local structure and physical properties under extreme conditions remain elusive due to experimental challenges. In this study, we utilize in situ X-ray diffraction (XRD) at the Matter in Extreme Conditions (MEC) end-station of the Linear Coherent Linac Source (LCLS) at SLAC National Accelerator Laboratory to investigate liquid silicates. Using an ultrabright X-ray source and a high-power optical laser, we probed the local atomic arrangement of shock-compressed liquid (Mg,Fe)SiO3 with varying Fe content, at pressures from 81(9) to 385(40) GPa. We compared these findings to ab initio molecular dynamics simulations under similar conditions. Results indicate continuous densification of the O-O and Mg-Si networks beyond Earth’s interior pressure range, potentially altering melt properties at extreme conditions. This could have significant implications for early planetary evolution, leading to notable differences in differentiation processes between smaller rocky planets, such as Earth and Venus, and super-Earths, which are exoplanets with masses nearly three times that of Earth.

Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-024-51796-7 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51796-7

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-024-51796-7

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51796-7