Propofol disrupts the functional core-matrix architecture of the thalamus in humans
Zirui Huang (),
George A. Mashour and
Anthony G. Hudetz
Additional contact information
Zirui Huang: University of Michigan Medical School
George A. Mashour: University of Michigan Medical School
Anthony G. Hudetz: University of Michigan Medical School
Nature Communications, 2024, vol. 15, issue 1, 1-13
Abstract:
Abstract Research into the role of thalamocortical circuits in anesthesia-induced unconsciousness is difficult due to anatomical and functional complexity. Prior neuroimaging studies have examined either the thalamus as a whole or focused on specific subregions, overlooking the distinct neuronal subtypes like core and matrix cells. We conducted a study of heathy volunteers and functional magnetic resonance imaging during conscious baseline, deep sedation, and recovery. We advanced the functional gradient mapping technique to delineate the functional geometry of thalamocortical circuits, within a framework of the unimodal-transmodal functional axis of the cortex. Here we show a significant shift in this geometry during deep sedation, marked by a transmodal-deficient geometry. This alteration is closely linked to the spatial variations in the matrix cell composition within the thalamus. This research bridges cellular and systems-level understanding, highlighting the crucial role of thalamic core–matrix functional architecture in understanding the neural mechanisms of states of consciousness.
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-024-51837-1 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51837-1
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-024-51837-1
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().