EconPapers    
Economics at your fingertips  
 

A tunable transition metal dichalcogenide entangled photon-pair source

Maximilian A. Weissflog (), Anna Fedotova, Yilin Tang, Elkin A. Santos, Benjamin Laudert, Saniya Shinde, Fatemeh Abtahi, Mina Afsharnia, Inmaculada Pérez Pérez, Sebastian Ritter, Hao Qin, Jiri Janousek, Sai Shradha, Isabelle Staude, Sina Saravi, Thomas Pertsch, Frank Setzpfandt, Yuerui Lu () and Falk Eilenberger ()
Additional contact information
Maximilian A. Weissflog: Friedrich Schiller University Jena
Anna Fedotova: Friedrich Schiller University Jena
Yilin Tang: The Australian National University
Elkin A. Santos: Friedrich Schiller University Jena
Benjamin Laudert: Friedrich Schiller University Jena
Saniya Shinde: Friedrich Schiller University Jena
Fatemeh Abtahi: Friedrich Schiller University Jena
Mina Afsharnia: Friedrich Schiller University Jena
Inmaculada Pérez Pérez: Friedrich Schiller University Jena
Sebastian Ritter: Friedrich Schiller University Jena
Hao Qin: The Australian National University
Jiri Janousek: The Australian National University
Sai Shradha: Friedrich Schiller University Jena
Isabelle Staude: Friedrich Schiller University Jena
Sina Saravi: Friedrich Schiller University Jena
Thomas Pertsch: Friedrich Schiller University Jena
Frank Setzpfandt: Friedrich Schiller University Jena
Yuerui Lu: The Australian National University
Falk Eilenberger: Friedrich Schiller University Jena

Nature Communications, 2024, vol. 15, issue 1, 1-10

Abstract: Abstract Entangled photon-pair sources are at the core of quantum applications like quantum key distribution, sensing, and imaging. Operation in space-limited and adverse environments such as in satellite-based and mobile communication requires robust entanglement sources with minimal size and weight requirements. Here, we meet this challenge by realizing a cubic micrometer scale entangled photon-pair source in a 3R-stacked transition metal dichalcogenide crystal. Its crystal symmetry enables the generation of polarization-entangled Bell states without additional components and provides tunability by simple control of the pump polarization. Remarkably, generation rate and state tuning are decoupled, leading to equal generation efficiency and no loss of entanglement. Combining transition metal dichalcogenides with monolithic cavities and integrated photonic circuitry or using quasi-phasematching opens the gate towards ultrasmall and scalable quantum devices.

Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-024-51843-3 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51843-3

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-024-51843-3

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51843-3