Binary progenitor systems for Type Ic supernovae
Martín Solar (),
Michał J. Michałowski (),
Jakub Nadolny,
Lluís Galbany,
Jens Hjorth,
Emmanouil Zapartas,
Jesper Sollerman,
Leslie Hunt,
Sylvio Klose,
Maciej Koprowski,
Aleksandra Leśniewska,
Michał Małkowski,
Ana M. Nicuesa Guelbenzu,
Oleh Ryzhov,
Sandra Savaglio,
Patricia Schady,
Steve Schulze,
Antonio Ugarte Postigo,
Susanna D. Vergani,
Darach Watson and
Radosław Wróblewski
Additional contact information
Martín Solar: Adam Mickiewicz University
Michał J. Michałowski: Adam Mickiewicz University
Jakub Nadolny: Adam Mickiewicz University
Lluís Galbany: Campus UAB
Jens Hjorth: University of Copenhagen
Emmanouil Zapartas: FORTH
Jesper Sollerman: Stockholm University, Albanova University Center
Leslie Hunt: INAF—Osservatorio Astrofisico di Arcetri
Sylvio Klose: Thüringer Landessternwarte Tautenburg
Maciej Koprowski: Nicolaus Copernicus University
Aleksandra Leśniewska: Adam Mickiewicz University
Michał Małkowski: Adam Mickiewicz University
Ana M. Nicuesa Guelbenzu: Thüringer Landessternwarte Tautenburg
Oleh Ryzhov: Adam Mickiewicz University
Sandra Savaglio: University of Calabria
Patricia Schady: University of Bath
Steve Schulze: Stockholm University, Albanova University Center
Antonio Ugarte Postigo: Université Cotê d’Azur
Susanna D. Vergani: PSL University, CNRS
Darach Watson: The Cosmic Dawn Center (DAWN)
Radosław Wróblewski: Adam Mickiewicz University
Nature Communications, 2024, vol. 15, issue 1, 1-9
Abstract:
Abstract Core-collapse supernovae are explosions of massive stars at the end of their evolution. They are responsible for metal production and for halting star formation, having a significant impact on galaxy evolution. The details of these processes depend on the nature of supernova progenitors, but it is unclear if Type Ic supernovae (without hydrogen or helium lines in their spectra) originate from core-collapses of very massive stars (>30 M⊙) or from less massive stars in binary systems. Here we show that Type II (with hydrogen lines) and Ic supernovae are located in environments with similar molecular gas densities, therefore their progenitors have comparable lifetimes and initial masses. This supports a binary interaction for most Type Ic supernova progenitors, which explains the lack of hydrogen and helium lines. This finding can be implemented in sub-grid prescriptions in numerical cosmological simulations to improve the feedback and chemical mixing.
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-024-51863-z Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51863-z
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-024-51863-z
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().