EconPapers    
Economics at your fingertips  
 

E(n)-Equivariant cartesian tensor message passing interatomic potential

Junjie Wang, Yong Wang, Haoting Zhang, Ziyang Yang, Zhixin Liang, Jiuyang Shi, Hui-Tian Wang, Dingyu Xing and Jian Sun ()
Additional contact information
Junjie Wang: Nanjing University
Yong Wang: Nanjing University
Haoting Zhang: Nanjing University
Ziyang Yang: Nanjing University
Zhixin Liang: Nanjing University
Jiuyang Shi: Nanjing University
Hui-Tian Wang: Nanjing University
Dingyu Xing: Nanjing University
Jian Sun: Nanjing University

Nature Communications, 2024, vol. 15, issue 1, 1-9

Abstract: Abstract Machine learning potential (MLP) has been a popular topic in recent years for its capability to replace expensive first-principles calculations in some large systems. Meanwhile, message passing networks have gained significant attention due to their remarkable accuracy, and a wave of message passing networks based on Cartesian coordinates has emerged. However, the information of the node in these models is usually limited to scalars, and vectors. In this work, we propose High-order Tensor message Passing interatomic Potential (HotPP), an E(n) equivariant message passing neural network that extends the node embedding and message to an arbitrary order tensor. By performing some basic equivariant operations, high order tensors can be coupled very simply and thus the model can make direct predictions of high-order tensors such as dipole moments and polarizabilities without any modifications. The tests in several datasets show that HotPP not only achieves high accuracy in predicting target properties, but also successfully performs tasks such as calculating phonon spectra, infrared spectra, and Raman spectra, demonstrating its potential as a tool for future research.

Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-024-51886-6 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51886-6

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-024-51886-6

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51886-6