EconPapers    
Economics at your fingertips  
 

Scalable interpolation of satellite altimetry data with probabilistic machine learning

William Gregory (), Ronald MacEachern, So Takao, Isobel R. Lawrence, Carmen Nab, Marc Peter Deisenroth and Michel Tsamados
Additional contact information
William Gregory: Princeton University
Ronald MacEachern: University College London
So Takao: University College London
Isobel R. Lawrence: European Space Agency
Carmen Nab: University College London
Marc Peter Deisenroth: University College London
Michel Tsamados: University College London

Nature Communications, 2024, vol. 15, issue 1, 1-11

Abstract: Abstract We present GPSat; an open-source Python programming library for performing efficient interpolation of non-stationary satellite altimetry data, using scalable Gaussian process techniques. We use GPSat to generate complete maps of daily 50 km-gridded Arctic sea ice radar freeboard, and find that, relative to a previous interpolation scheme, GPSat offers a 504 × computational speedup, with less than 4 mm difference on the derived freeboards on average. We then demonstrate the scalability of GPSat through freeboard interpolation at 5 km resolution, and Sea-Level Anomalies (SLA) at the resolution of the altimeter footprint. Interpolated 5 km radar freeboards show strong agreement with airborne data (linear correlation of 0.66). Footprint-level SLA interpolation also shows improvements in predictive skill over linear regression. In this work, we suggest that GPSat could overcome the computational bottlenecks faced in many altimetry-based interpolation routines, and hence advance critical understanding of ocean and sea ice variability over short spatio-temporal scales.

Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-024-51900-x Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51900-x

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-024-51900-x

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51900-x