EconPapers    
Economics at your fingertips  
 

A singlet-triplet hole-spin qubit in MOS silicon

S. D. Liles (), D. J. Halverson, Z. Wang, A. Shamim, R. S. Eggli, I. K. Jin, J. Hillier, K. Kumar, I. Vorreiter, M. J. Rendell, J. Y. Huang, C. C. Escott, F. E. Hudson, W. H. Lim, D. Culcer, A. S. Dzurak and A. R. Hamilton
Additional contact information
S. D. Liles: University of New South Wales
D. J. Halverson: University of New South Wales
Z. Wang: University of New South Wales
A. Shamim: University of New South Wales
R. S. Eggli: University of Basel
I. K. Jin: University of New South Wales
J. Hillier: University of New South Wales
K. Kumar: University of New South Wales
I. Vorreiter: University of New South Wales
M. J. Rendell: University of New South Wales
J. Y. Huang: University of New South Wales
C. C. Escott: University of New South Wales
F. E. Hudson: University of New South Wales
W. H. Lim: University of New South Wales
D. Culcer: University of New South Wales
A. S. Dzurak: University of New South Wales
A. R. Hamilton: University of New South Wales

Nature Communications, 2024, vol. 15, issue 1, 1-11

Abstract: Abstract Holes in silicon quantum dots are promising for spin qubit applications due to the strong intrinsic spin-orbit coupling. The spin-orbit coupling produces complex hole-spin dynamics, providing opportunities to further optimise spin qubits. Here, we demonstrate a singlet-triplet qubit using hole states in a planar metal-oxide-semiconductor double quantum dot. We demonstrate rapid qubit control with singlet-triplet oscillations up to 400 MHz. The qubit exhibits promising coherence, with a maximum dephasing time of 600 ns, which is enhanced to 1.3 μs using refocusing techniques. We investigate the magnetic field anisotropy of the eigenstates, and determine a magnetic field orientation to improve the qubit initialisation fidelity. These results present a step forward for spin qubit technology, by implementing a high quality singlet-triplet hole-spin qubit in planar architecture suitable for scaling up to 2D arrays of coupled qubits.

Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-024-51902-9 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51902-9

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-024-51902-9

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51902-9