EconPapers    
Economics at your fingertips  
 

Femtosecond pulse amplification on a chip

Mahmoud A. Gaafar, Markus Ludwig, Kai Wang, Thibault Wildi, Thibault Voumard, Milan Sinobad, Jan Lorenzen, Henry Francis, Jose Carreira, Shuangyou Zhang, Toby Bi, Pascal Del’Haye, Michael Geiselmann, Neetesh Singh, Franz X. Kärtner, Sonia M. Garcia-Blanco and Tobias Herr ()
Additional contact information
Mahmoud A. Gaafar: Deutsches Elektronen-Synchrotron DESY
Markus Ludwig: Deutsches Elektronen-Synchrotron DESY
Kai Wang: University of Twente
Thibault Wildi: Deutsches Elektronen-Synchrotron DESY
Thibault Voumard: Deutsches Elektronen-Synchrotron DESY
Milan Sinobad: Deutsches Elektronen-Synchrotron DESY
Jan Lorenzen: Deutsches Elektronen-Synchrotron DESY
Henry Francis: Chemin de la Dent-d’Oche 1B
Jose Carreira: Chemin de la Dent-d’Oche 1B
Shuangyou Zhang: Max-Planck Institute for the Science of Light
Toby Bi: Max-Planck Institute for the Science of Light
Pascal Del’Haye: Max-Planck Institute for the Science of Light
Michael Geiselmann: Chemin de la Dent-d’Oche 1B
Neetesh Singh: Deutsches Elektronen-Synchrotron DESY
Franz X. Kärtner: Deutsches Elektronen-Synchrotron DESY
Sonia M. Garcia-Blanco: University of Twente
Tobias Herr: Deutsches Elektronen-Synchrotron DESY

Nature Communications, 2024, vol. 15, issue 1, 1-8

Abstract: Abstract Femtosecond laser pulses enable the synthesis of light across the electromagnetic spectrum and provide access to ultrafast phenomena in physics, biology, and chemistry. Chip-integration of femtosecond technology could revolutionize applications such as point-of-care diagnostics, bio-medical imaging, portable chemical sensing, or autonomous navigation. However, current chip-integrated pulse sources lack the required peak power, and on-chip amplification of femtosecond pulses has been an unresolved challenge. Here, addressing this challenge, we report >50-fold amplification of 1 GHz-repetition-rate chirped femtosecond pulses in a CMOS-compatible photonic chip to 800 W peak power with 116 fs pulse duration. This power level is 2–3 orders of magnitude higher compared to those in previously demonstrated on-chip pulse sources and can provide the power needed to address key applications. To achieve this, detrimental nonlinear effects are mitigated through all-normal dispersion, large mode-area and rare-earth-doped gain waveguides. These results offer a pathway to chip-integrated femtosecond technology with peak power levels characteristic of table-top sources.

Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-024-52057-3 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-52057-3

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-024-52057-3

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-52057-3