Network community detection via neural embeddings
Sadamori Kojaku,
Filippo Radicchi,
Yong-Yeol Ahn and
Santo Fortunato ()
Additional contact information
Sadamori Kojaku: Binghamton University
Filippo Radicchi: Indiana University
Yong-Yeol Ahn: Indiana University
Santo Fortunato: Indiana University
Nature Communications, 2024, vol. 15, issue 1, 1-10
Abstract:
Abstract Recent advances in machine learning research have produced powerful neural graph embedding methods, which learn useful, low-dimensional vector representations of network data. These neural methods for graph embedding excel in graph machine learning tasks and are now widely adopted. However, how and why these methods work—particularly how network structure gets encoded in the embedding—remain largely unexplained. Here, we show that node2vec—shallow, linear neural network—encodes communities into separable clusters better than random partitioning down to the information-theoretic detectability limit for the stochastic block models. We show that this is due to the equivalence between the embedding learned by node2vec and the spectral embedding via the eigenvectors of the symmetric normalized Laplacian matrix. Numerical simulations demonstrate that node2vec is capable of learning communities on sparse graphs generated by the stochastic blockmodel, as well as on sparse degree-heterogeneous networks. Our results highlight the features of graph neural networks that enable them to separate communities in the embedding space.
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-024-52355-w Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-52355-w
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-024-52355-w
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().