EconPapers    
Economics at your fingertips  
 

Carbon isotope budget indicates biological disequilibrium dominated ocean carbon storage at the Last Glacial Maximum

Anne Willem Omta (), Christopher L. Follett, Jonathan M. Lauderdale and Raffaele Ferrari
Additional contact information
Anne Willem Omta: Case Western Reserve University
Christopher L. Follett: University of Liverpool
Jonathan M. Lauderdale: Massachusetts Institute of Technology
Raffaele Ferrari: Massachusetts Institute of Technology

Nature Communications, 2024, vol. 15, issue 1, 1-11

Abstract: Abstract Understanding the causes of the ~90 ppmv atmospheric CO2 swings between glacial and interglacial climates is an important open challenge in paleoclimate research. Although the regularity of the glacial-interglacial cycles hints at a single driving mechanism, Earth System models require many independent physical and biological processes to explain the full observed CO2 signal. Here we show that biologically sequestered carbon in the ocean can explain an atmospheric CO2 change of 75 ± 40 ppmv, based on a mass balance calculation using published carbon isotopic measurements. An analysis of the carbon isotopic signatures of different water masses indicates similar regenerated carbon inventories at the Last Glacial Maximum and during the Holocene, requiring that the change in carbon storage was dominated by disequilibrium. We attribute the inferred change in carbon disequilibrium to expansion of sea-ice or change in the overturning circulation.

Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-024-52360-z Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-52360-z

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-024-52360-z

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-52360-z