Local ionic transport enables selective PGM-free bipolar membrane electrode assembly
Mengran Li (),
Eric W. Lees,
Wen Ju,
Siddhartha Subramanian,
Kailun Yang,
Justin C. Bui,
Hugo-Pieter Iglesias van Montfort,
Maryam Abdinejad,
Joost Middelkoop,
Peter Strasser,
Adam Z. Weber,
Alexis T. Bell and
Thomas Burdyny ()
Additional contact information
Mengran Li: Delft University of Technology; 9 van der Maasweg
Eric W. Lees: Lawrence Berkeley National Laboratory
Wen Ju: Technical University Berlin
Siddhartha Subramanian: Delft University of Technology; 9 van der Maasweg
Kailun Yang: Delft University of Technology; 9 van der Maasweg
Justin C. Bui: Lawrence Berkeley National Laboratory
Hugo-Pieter Iglesias van Montfort: Delft University of Technology; 9 van der Maasweg
Maryam Abdinejad: Delft University of Technology; 9 van der Maasweg
Joost Middelkoop: Delft University of Technology; 9 van der Maasweg
Peter Strasser: Technical University Berlin
Adam Z. Weber: Lawrence Berkeley National Laboratory
Alexis T. Bell: Lawrence Berkeley National Laboratory
Thomas Burdyny: Delft University of Technology; 9 van der Maasweg
Nature Communications, 2024, vol. 15, issue 1, 1-12
Abstract:
Abstract Bipolar membranes in electrochemical CO2 conversion cells enable different reaction environments in the CO2-reduction and O2-evolution compartments. Under ideal conditions, water-splitting in the bipolar membrane allows for platinum-group-metal-free anode materials and high CO2 utilizations. In practice, however, even minor unwanted ion crossover limits stability to short time periods. Here we report the vital role of managing ionic species to improve CO2 conversion efficiency while preventing acidification of the anodic compartment. Through transport modelling, we identify that an anion-exchange ionomer in the catalyst layer improves local bicarbonate availability and increasing the proton transference number in the bipolar membranes increases CO2 regeneration and limits K+ concentration in the cathode region. Through experiments, we show that a uniform local distribution of bicarbonate ions increases the accessibility of reverted CO2 to the catalyst surface, improving Faradaic efficiency and limiting current densities by twofold. Using these insights, we demonstrate a fully platinum-group-metal-free bipolar membrane electrode assembly CO2 conversion system exhibiting
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-024-52409-z Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-52409-z
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-024-52409-z
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().