EconPapers    
Economics at your fingertips  
 

A hypergraph model shows the carbon reduction potential of effective space use in housing

Ramon Elias Weber (), Caitlin Mueller and Christoph Reinhart
Additional contact information
Ramon Elias Weber: Massachusetts Institute of Technology, 77 Massachusetts Avenue
Caitlin Mueller: Massachusetts Institute of Technology, 77 Massachusetts Avenue
Christoph Reinhart: Massachusetts Institute of Technology, 77 Massachusetts Avenue

Nature Communications, 2024, vol. 15, issue 1, 1-14

Abstract: Abstract Humans spend over 90% of their time in buildings, which account for 40% of anthropogenic greenhouse gas emissions and are a leading driver of climate change. Incentivizing more sustainable construction, building codes are used to enforce indoor comfort standards and minimum energy efficiency requirements. However, they currently only reward measures such as equipment or envelope upgrades and disregard the actual spatial configuration and usage. Using a new hypergraph model that encodes building floorplan organization and facilitates automatic geometry creation, we demonstrate that space efficiency outperforms envelope upgrades in terms of operational carbon emissions in 72%, 61% and 33% of surveyed buildings in Zurich, New York, and Singapore. Using automatically generated floorplans in a case study in Zurich further increased access to daylight by up to 24%, revealing that auto-generated floorplans have the potential to improve the quality of residential spaces in terms of environmental performance and access to daylight.

Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-024-52506-z Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-52506-z

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-024-52506-z

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-52506-z