EconPapers    
Economics at your fingertips  
 

Tracing the electron transport behavior in quantum-dot light-emitting diodes via single photon counting technique

Qiang Su, Zinan Chen and Shuming Chen ()
Additional contact information
Qiang Su: Southern University of Science and Technology
Zinan Chen: Southern University of Science and Technology
Shuming Chen: Southern University of Science and Technology

Nature Communications, 2024, vol. 15, issue 1, 1-10

Abstract: Abstract The electron injection and transport behavior are of vital importance to the performance of quantum-dot light-emitting diodes. By simultaneously measuring the electroluminescence-photoluminescence of the quantum-dot light-emitting diodes, we identify the presence of leakage electrons which leads to the discrepancy of the electroluminescence and the photoluminescence roll-off. To trace the transport paths of the leakage electrons, a single photon counting technique is developed. This technique enables us to detect the weak photon signals and thus provides a means to visualize the electron transport paths at different voltages. The results show that, the electrons, except those recombining within the quantum-dots, leak to the hole transport layer or recombine at the hole transport layer/quantum-dot interface, thus leading to the reduction of efficiency. By reducing the amount of leakage electrons, quantum-dot light-emitting diode with an internal power conversion efficiency of over 98% can be achieved.

Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-024-52521-0 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-52521-0

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-024-52521-0

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-52521-0