The double-edged role of FASII regulator FabT in Streptococcus pyogenes infection
Clara Lambert,
Marine Gaillard,
Paprapach Wongdontree,
Caroline Bachmann,
Antoine Hautcoeur,
Karine Gloux,
Thomas Guilbert,
Celine Méhats,
Bastien Prost,
Audrey Solgadi,
Sonia Abreu,
Muriel Andrieu,
Claire Poyart,
Alexandra Gruss () and
Agnes Fouet ()
Additional contact information
Clara Lambert: Université Paris Cité, Institut Cochin, INSERM, U1016, CNRS, UMR8104
Marine Gaillard: Université Paris Cité, Institut Cochin, INSERM, U1016, CNRS, UMR8104
Paprapach Wongdontree: Université Paris-Saclay
Caroline Bachmann: Université Paris Cité, Institut Cochin, INSERM, U1016, CNRS, UMR8104
Antoine Hautcoeur: Université Paris Cité, Institut Cochin, INSERM, U1016, CNRS, UMR8104
Karine Gloux: Université Paris-Saclay
Thomas Guilbert: Université Paris Cité, Institut Cochin, INSERM, U1016, CNRS, UMR8104
Celine Méhats: Université Paris Cité, Institut Cochin, INSERM, U1016, CNRS, UMR8104
Bastien Prost: Université Paris-Saclay
Audrey Solgadi: Université Paris-Saclay
Sonia Abreu: Université Paris-Saclay
Muriel Andrieu: Université Paris Cité, Institut Cochin, INSERM, U1016, CNRS, UMR8104
Claire Poyart: Université Paris Cité, Institut Cochin, INSERM, U1016, CNRS, UMR8104
Alexandra Gruss: Université Paris-Saclay
Agnes Fouet: Université Paris Cité, Institut Cochin, INSERM, U1016, CNRS, UMR8104
Nature Communications, 2024, vol. 15, issue 1, 1-14
Abstract:
Abstract In Streptococcus pyogenes, the type II fatty acid (FA) synthesis pathway FASII is feedback-controlled by the FabT repressor bound to an acyl-Acyl carrier protein. Although FabT defects confer reduced virulence in animal models, spontaneous fabT mutants arise in vivo. We resolved this paradox by characterizing the conditions and mechanisms requiring FabT activity, and those promoting fabT mutant emergence. The fabT defect leads to energy dissipation, limiting mutant growth on human tissue products, which explains the FabT requirement during infection. Conversely, emerging fabT mutants show superior growth in biotopes rich in saturated FAs, where continued FASII activity limits their incorporation. We propose that membrane alterations and continued FASII synthesis are the primary causes for increased fabT mutant mortality in nutrient‐limited biotopes, by failing to stop metabolic consumption. Our findings elucidate the rationale for emerging fabT mutants that improve bacterial survival in lipid-rich biotopes, but lead to a genetic impasse for infection.
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-024-52637-3 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-52637-3
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-024-52637-3
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().