ITER full model in MCNP for radiation safety demonstration
R. Juarez (),
M. Belotti,
A. Kolsek,
V. López,
J. Alguacil,
G. Pedroche,
A. J. López-Revelles,
P. Martínez-Albertos,
M. Pietri,
P. Guijosa,
Y. Tonqueze,
M. J. Loughlin,
E. Polunovskiy,
R. Pampin,
M. Fabbri and
J. Sanz
Additional contact information
R. Juarez: Universidad Nacional de Educación a Distancia (UNED)
M. Belotti: Universidad Nacional de Educación a Distancia (UNED)
A. Kolsek: Universidad Nacional de Educación a Distancia (UNED)
V. López: Universidad Nacional de Educación a Distancia (UNED)
J. Alguacil: Universidad Nacional de Educación a Distancia (UNED)
G. Pedroche: Universidad Nacional de Educación a Distancia (UNED)
A. J. López-Revelles: Universidad Nacional de Educación a Distancia (UNED)
P. Martínez-Albertos: Universidad Nacional de Educación a Distancia (UNED)
M. Pietri: Universidad Nacional de Educación a Distancia (UNED)
P. Guijosa: Universidad Nacional de Educación a Distancia (UNED)
Y. Tonqueze: St. Paul Lez
M. J. Loughlin: Oak Ridge National Laboratory (ORNL)
E. Polunovskiy: St. Paul Lez
R. Pampin: Fusion for Energy (F4E)
M. Fabbri: Fusion for Energy (F4E)
J. Sanz: Universidad Nacional de Educación a Distancia (UNED)
Nature Communications, 2024, vol. 15, issue 1, 1-9
Abstract:
Abstract The development of nuclear fusion as a safe and virtually limitless power source is receiving growing attention in the context of looming energy crisis and climate change. ITER project stands as the flagship international initiative and is advancing steadily. The construction of the Tokamak Complex is nearly finished, and the assembly of core components has begun on site. Simultaneously, the design is being finalized, and the safety case is becoming more concrete. Current approaches to radiation safety demonstration using 3D nuclear analysis with the Monte Carlo code MCNP require sophisticated artifacts to sew together simulations in separate models for the Tokamak and the rest of the facility. This results in cumbersome studies and, consequently, challengeable conclusions. To address this issue, we have built the an integral MCNP model of the ITER facility: the ITER full model. Along with improvements to the D1SUNED code, we illustrate its computational practicality and pertinence in two meaningful simulations for ITER safety case. This work represents the culmination of a two-decade-long effort of ITER modelling aiming to demonstrate adequate radiation safety. Beyond supporting the remaining design tasks, this model simplifies the corresponding 3D nuclear analysis and improves the robustness of the ITER safety case.
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-024-52667-x Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-52667-x
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-024-52667-x
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().