EconPapers    
Economics at your fingertips  
 

Tomography of entangling two-qubit logic operations in exchange-coupled donor electron spin qubits

Holly G. Stemp, Serwan Asaad, Mark R. van Blankenstein, Arjen Vaartjes, Mark A. I. Johnson, Mateusz T. Mądzik, Amber J. A. Heskes, Hannes R. Firgau, Rocky Y. Su, Chih Hwan Yang, Arne Laucht, Corey I. Ostrove, Kenneth M. Rudinger, Kevin Young, Robin Blume-Kohout, Fay E. Hudson, Andrew S. Dzurak, Kohei M. Itoh, Alexander M. Jakob, Brett C. Johnson, David N. Jamieson and Andrea Morello ()
Additional contact information
Holly G. Stemp: UNSW Sydney
Serwan Asaad: UNSW Sydney
Mark R. van Blankenstein: UNSW Sydney
Arjen Vaartjes: UNSW Sydney
Mark A. I. Johnson: UNSW Sydney
Mateusz T. Mądzik: UNSW Sydney
Amber J. A. Heskes: UNSW Sydney
Hannes R. Firgau: UNSW Sydney
Rocky Y. Su: UNSW Sydney
Chih Hwan Yang: UNSW Sydney
Arne Laucht: UNSW Sydney
Corey I. Ostrove: Sandia National Laboratories
Kenneth M. Rudinger: Sandia National Laboratories
Kevin Young: Sandia National Laboratories
Robin Blume-Kohout: Sandia National Laboratories
Fay E. Hudson: UNSW Sydney
Andrew S. Dzurak: UNSW Sydney
Kohei M. Itoh: Keio University, Kohoku-ku
Alexander M. Jakob: ARC Centre of Excellence for Quantum Computation and Communication Technology
Brett C. Johnson: RMIT University
David N. Jamieson: ARC Centre of Excellence for Quantum Computation and Communication Technology
Andrea Morello: UNSW Sydney

Nature Communications, 2024, vol. 15, issue 1, 1-10

Abstract: Abstract Scalable quantum processors require high-fidelity universal quantum logic operations in a manufacturable physical platform. Donors in silicon provide atomic size, excellent quantum coherence and compatibility with standard semiconductor processing, but no entanglement between donor-bound electron spins has been demonstrated to date. Here we present the experimental demonstration and tomography of universal one- and two-qubit gates in a system of two weakly exchange-coupled electrons, bound to single phosphorus donors introduced in silicon by ion implantation. We observe that the exchange interaction has no effect on the qubit coherence. We quantify the fidelity of the quantum operations using gate set tomography (GST), and we use the universal gate set to create entangled Bell states of the electrons spins, with fidelity 91.3 ± 3.0%, and concurrence 0.87 ± 0.05. These results form the necessary basis for scaling up donor-based quantum computers.

Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-024-52795-4 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-52795-4

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-024-52795-4

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-52795-4