Deep learning prediction of electrospray ionization tandem mass spectra of chemically derived molecules
Bin Chen,
Hailiang Li,
Rongfu Huang,
Yanan Tang () and
Feng Li ()
Additional contact information
Bin Chen: Sichuan University
Hailiang Li: Sichuan University
Rongfu Huang: Sichuan University
Yanan Tang: Sichuan University
Feng Li: Sichuan University
Nature Communications, 2024, vol. 15, issue 1, 1-10
Abstract:
Abstract Chemical derivatization is a powerful strategy to enhance sensitivity and selectivity of liquid chromatography-mass spectrometry for non-targeted analysis of chemicals in complex mixtures. However, it remains impossible to obtain large sets of reference spectra for chemically derived molecules (CDMs), representing a major barrier in real-world applications. Herein, we describe a deep learning approach that enables accurate prediction of electrospray ionization tandem mass spectra for CDMs (DeepCDM). DeepCDM is established by transfer learning from a generic spectrum predicting model using a small set of experimentally acquired tandem mass spectra of CDMs, which converts a generic model with low predictability for CDMs into a specialized model with high predictability. We demonstrate DeepCDM by predicting electrospray ionization tandem mass spectra of dansylated molecules. The success in establishing Dns-MS further enables the development of DnsBank, a dansylation-specialized in silico spectral library. DnsBank achieves significant increases of accurate annotation rates of dansylated molecules, facilitating discovery of new hazardous pollutants from an environmental study of leather industrial wastewater. DeepCDM is also highly versatile for other classes of CDMs. Therefore, we envision that DeepCDM will pave a way for high-throughput identification of CDMs in non-targeted analysis to dig unknowns with potential health impacts from emerging anthropogenic chemicals.
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-024-52805-5 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-52805-5
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-024-52805-5
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().