EconPapers    
Economics at your fingertips  
 

Direct electrosynthesis and separation of ammonia and chlorine from waste streams via a stacked membrane-free electrolyzer

Jianan Gao, Qingquan Ma, Zhiwei Wang, Bruce E. Rittmann and Wen Zhang ()
Additional contact information
Jianan Gao: New Jersey Institute of Technology
Qingquan Ma: New Jersey Institute of Technology
Zhiwei Wang: Tongji University
Bruce E. Rittmann: Arizona State University
Wen Zhang: New Jersey Institute of Technology

Nature Communications, 2024, vol. 15, issue 1, 1-10

Abstract: Abstract Electrosynthesis, a viable path to decarbonize the chemical industry, has been harnessed to generate valuable chemicals under ambient conditions. Here, we present a membrane-free flow electrolyzer for paired electrocatalytic upcycling of nitrate (NO3−) and chloride (Cl−) to ammonia (NH3) and chlorine (Cl2) gases by utilizing waste streams as substitutes for traditional electrolytes. The electrolyzer concurrently couples electrosynthesis and gaseous-product separation, which minimizes the undesired redox reaction between NH3 and Cl2 and thus prevents products loss. Using a three-stacked-modules electrolyzer system, we efficiently processed a reverse osmosis retentate waste stream. This yielded high concentrations of (NH4)2SO4 (83.8 mM) and NaClO (243.4 mM) at an electrical cost of 7.1 kWh per kilogram of solid products, while residual NH3/NH4+ (0.3 mM), NO2− (0.2 mM), and Cl2/HClO/ClO− (0.1 mM) pollutants in the waste stream could meet the wastewater discharge regulations for nitrogen- and chlorine-species. This study underscores the value of pairing appropriate half-reactions, utilizing waste streams to replace traditional electrolytes, and merging product synthesis with separation to refine electrosynthesis platforms.

Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-024-52830-4 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-52830-4

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-024-52830-4

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-52830-4