Interference length reveals regularity of crossover placement across species
Marcel Ernst (),
Raphael Mercier and
David Zwicker ()
Additional contact information
Marcel Ernst: Max Planck Institute for Dynamics and Self-Organization
Raphael Mercier: Max Planck Institute for Plant Breeding Research
David Zwicker: Max Planck Institute for Dynamics and Self-Organization
Nature Communications, 2024, vol. 15, issue 1, 1-9
Abstract:
Abstract Crossover interference is a phenomenon that affects the number and positioning of crossovers in meiosis and thus affects genetic diversity and chromosome segregation. Yet, the underlying mechanism is not fully understood, partly because quantification is difficult. To overcome this challenge, we introduce the interference length Lint that quantifies changes in crossover patterning due to interference. We show that it faithfully captures known aspects of crossover interference and provides superior statistical power over previous measures such as the interference distance and the gamma shape parameter. We apply our analysis to empirical data and unveil a similar behavior of Lint across species, which hints at a common mechanism. A recently proposed coarsening model generally captures these aspects, providing a unified view of crossover interference. Consequently, Lint facilitates model refinements and general comparisons between alternative models of crossover interference.
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-024-53054-2 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53054-2
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-024-53054-2
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().