EconPapers    
Economics at your fingertips  
 

Exchange coupling states of cobalt complexes to control proton-coupled electron transfer

Jueun Lee, Junseong Lee and Junhyeok Seo ()
Additional contact information
Jueun Lee: Gwangju Institute of Science and Technology
Junseong Lee: Chonnam National University
Junhyeok Seo: Gwangju Institute of Science and Technology

Nature Communications, 2024, vol. 15, issue 1, 1-10

Abstract: Abstract The electrochemical proton reactivity of transition metal complexes receives significant attentions. A thorough understanding of proton-coupled electron transfer (PCET) pathways is essential for elucidating the mechanism behind a proton reduction reaction, and controlling the pathway is a key focus in the field of the catalyst development. Spin interactions within complexes, which arise during electron transfer, can affect significantly the PCET pathway. Herein, we explore the phenomenon of spin rearrangement during the electrochemical reorganization of high-spin cobalt complexes. Our findings reveal that opposing spin interactions, induced by different coordination environments, can alter the PCET pathway. Finally, detailed analysis of the PCET pathway allows us to propose mechanisms for proton reduction in high-spin cobalt complexes.

Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-024-53099-3 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53099-3

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-024-53099-3

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53099-3