EconPapers    
Economics at your fingertips  
 

Supercharged fluorescent proteins detect lanthanides via direct antennae signaling

Kevin Y. Huang, Lizette Cardenas, Andrew D. Ellington and David J. F. Walker ()
Additional contact information
Kevin Y. Huang: Army Research Laboratory−South
Lizette Cardenas: University of Texas at Austin
Andrew D. Ellington: University of Texas at Austin
David J. F. Walker: University of Texas at Austin

Nature Communications, 2024, vol. 15, issue 1, 1-11

Abstract: Abstract A sustainable operation for harvesting metals in the lanthanide series is needed to meet the rising demand for rare earth elements across diverse global industries. However, existing methods are limited in their capacity for detection and capture at environmentally and industrially relevant lanthanide concentrations. Supercharged fluorescent proteins have solvent-exposed, negatively charged residues that potentially create multiple direct chelation pockets for free lanthanide cations. Here, we demonstrate that negatively supercharged proteins can bind and quantitatively report concentrations of lanthanides via an underutilized lanthanide-to-chromophore pathway of energy transfer. The top-performing sensors detect lanthanides in the micromolar to millimolar range and remain unperturbed by environmentally significant concentrations of competing metals. As a demonstration of the versatility and adaptability of this energy transfer method, we show proximity and signal transmission between the lanthanides and a supramolecular assembly of supercharged proteins, paving the way for the detection of lanthanides via programmable protein oligomers and materials.

Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-024-53106-7 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53106-7

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-024-53106-7

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53106-7